Typical circulant double coverings of a circulant graph
نویسندگان
چکیده
منابع مشابه
Typical circulant double coverings of a circulant graph
Several isomorphism classes of graph coverings of a graph G have been enumerated by many authors. Kwak and Lee (Canad. J. Math. XLII (1990) 747) enumerated the isomorphism classes of graph bundles and those of n-fold coverings with respect to a group of automorphisms of the base graph G which 9x a spanning tree. Hofmeister (Discrete Math. 98 (1991) 175) independently enumerated the isomorphism ...
متن کاملEnumerating typical abelian prime-fold coverings of a circulant graph
Enumerating the isomorphism classes of several types of graph coverings is one of the central research topics in enumerative topological graph theory (see [R. Feng, J.H. Kwak, J. Kim, J. Lee, Isomorphism classes of concrete graph coverings, SIAM J. Discrete Math. 11 (1998) 265–272; R. Feng, J.H. Kwak, Typical circulant double coverings of a circulant graph, Discrete Math. 277 (2004) 73–85; R. F...
متن کاملComputational Results of Duadic Double Circulant Codes
Quadratic residue codes have been one of the most important classes of algebraic codes. They have been generalized into duadic codes and quadratic double circulant codes. In this paper we introduce a new subclass of double circulant codes, called duadic double circulant codes, which is a generalization of quadratic double circulant codes for prime lengths. This class generates optimal self-dual...
متن کاملDouble Wieferich Pairs and Circulant Hadamard Matrices
We show that all but 4489 integers n with 4 < n ≤ 4 ·1030 cannot occur as the order of a circulant Hadamard matrix. Our algorithm allows us to search 10000 times farther than prior efforts, while substantially reducing memory requirements. The principal improvement over prior methods involves the incorporation of a separate search for double Wieferich prime pairs {p, q}, which have the property...
متن کاملOn self-dual double circulant codes
Self-dual double circulant codes of odd dimension are shown to be dihedral in even characteristic and consta-dihedral in odd characteristic. Exact counting formulae are derived for them and used to show they contain families of codes with relative distance satisfying a modified Gilbert-Varshamov bound.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2004
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(03)00245-0